
Statistical Analysis of the Instron Testing
Machine Load Deflection Behavior of

Vibration Isolators
MCE 313 - Lab 3

Taylor Smith, Maximillian Hill, Brian Kenney, Jessica Russo, Corey
Murphy, Ian Hallam

Team 3

March 28, 2018



Abstract

Statistical analysisis is a key part of the experimental procedure because the application
interprets and communicates research findings to a higher degree. The statistical analysis
applied to these data sets included: comparative analysis, 98% confidence interval, outlier
analysis, mean, and standard deviation. Two sets of data were used in this report: the
experimental data from the Instron Testing Machine Load Deflection Behavior of Vibration
Isolators lab experiment, and a set of given data. The Instron 5582 was used to gradually
compress a Coiled spring isolator at increments of 0.05 inches until the total displacement
reached 0.6 inches. At each increment, the force applied was measured in pounds force(lbf ).
The stress-strain curve was successful in representing the Coiled spring isolator, and con-
firmed it to be linear, with a maximum load of 750lbf resulting in a deflection of 1.06488
inches. A 98% confidence interval was obtained for both data sets. For the experimental
data set, one is 98% confident that the mean of that data set is within the range of 697.7362
lbf/in to 710.7598 lbf/in. The given data set had a 98% confidence interval of values that
ranged from 690.0774 lbf/into 700.6976 lbf/in. One is a 98% confident that the average
spring constant fall between those stated ranges. A comparative analysis of the two data
sets was performed. The null hypothesis states that no statistical significance exists be-
tween the two sets of data. Once comparative analysis was performed, the null hypothesis
was rejected. Indicating that there is statistical significance between the two data sets, and
variation exists.
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1 Introduction

The purpose of performing statistical analysis on data sets is that it allows those per-
forming the experiment and analyzing the data to make experimentally backed conclusions
and understand uncertainty in those conclusions. Statistical analysis has several uses in-
cluding: understanding the nature of the data, the relation of the data to the underlying
population, and to identify trends. In this analysis, the following analyses were performed:
outlier analysis, standard deviation, mean, 98% confidence interval, and comparative analy-
sis. There are two data sets being analyzed. One data set is the experimental data provided
from the Instron Testing Machine during the Load Deflection Behavior of Vibration Isolators
lab performed prior to this analysis. The data from this lab shows only the spring constant
values, k, of the coiled spring isolator, which were discovered using corrected deflection val-
ues. The second set of spring constant data is given, and is representative of 10 experiments
performed using the same apparatus and procedure [2].

The general procedure of this experiment is as follows: the Instron gradually compresses
a Coiled spring isolator at increments of 0.05 inches until the total displacement reaches
0.6 inches. At each increment, the force applied was measured in pounds force(lbf ) [1].
The stress-strain curve was successful in representing the Coiled spring isolator, which was
confirmed to be linear, having a maximum load of 750lbf resulting in a deflection of 1.0648
inches. Those values are concurrent with the Data obtained by the manufacture.

On both the experimental and given data sets an outlier analysis is performed. This
process will eliminate values that have a low probability of occurrence [8]. Once the outlier
analysis is performed for both data sets, the mean and standard deviation will be recalculated
individually. A confidence interval is obtained for both data sets. The results of those are
as follows: one is 98% confident that the spring constant value will fall within the range
697.7326 lbf/in and 710.7598 lbf/in, for the experimental data set. One is 98% confident
that the spring constant value will fall within the range of 690.0774 lbf/in to 700.6976 lbf/in.

Lastly, a comparative analysis was performed on both the experimental and given data
sets. The comparative analysis states whether or not the data sets experience any variance
between one another and whether that difference is statistically significant. In hand, it de-
termines whether the difference between the two means is significant, or due to variance.
The null hypothesis used said that there is no statistical significance between the two data
sets [8]. The analysis performed rejected the null hypothesis, stating that there is statis-
tical significance between the two data sets. Variance occurs within the experimental and
given data. As a result of the variance, one is able to say that the spring constant for the
experimental data is higher than the spring constant value from the given data set.

2 Theory

The purpose of lab 1 was to verify the stiffness of a given spring in accordance with
Hooke’s Law [1,7]. Hooke’s Law states that the force needed to extend or compress a spring
is dictated by the stiffness or spring coefficient and some linear distance. Hooke’s Law can
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be written using the equations below:

F = kx (1)

or

F (x) = kdx+ bi, (2)

where F or F (x) is the force or load developed by the spring, k represents the spring coef-
ficient or stiffness and x or dx represents deflection and change in deflection, respectively.
The bi value represents any initial load [7].

The experimental results for the linear spring showed that the spring stiffness, k, obtained
was close to the spring stiffness provided by the manufacture. In an arena where more
precise values are required with higher confidence you must complete a variety of statistical
analyses. Statistical analyses are used in research to interpret and communicate research
findings. These findings may or may not support the hypotheses. Statistical analysis can
also support the methodology and conclusions.

The mean of a data set refers to the central tendency of a set of data [6]. Finding the
mean is the average or central value obtained. This is computed by dividing the sum of the
data by the number of data points as seen here:

x = 1
n

(
n∑
i=1

xi) (3)

where the mean value represented by x. The value n represents the number of observations
in the data set and xi is a singular observation or data point. This central value increases
its confidence when n is large.

Deviation of a data set indicates difference between a data point and the set’s mean.
Deviation is defined as:

δ = |xi − x| (4)

where the deviation, δ, is the absolute value of the difference between any point and the
mean value. The total amount of deviation from a set’s mean is known as Variance. The
variance may be obtained by following equation:

S2 =
∑N
i=1(xi − x)2

n− 1 (5)

Variance is represented by S2. The sum of the mean value, represented by x, and the
sample points, xi, are squared. The subsequent value is that sum divided by n − 1 or v,
representing the degrees of freedom in the set. The square root of your variance gives the
standard deviation. Standard deviation represents the average variance of a data set; this
can be understood as the mean of the variance. Therefore, a low standard deviation indicates
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low variance and more precision (not accuracy) in a data set where a higher value suggests
larger deviation. In order to find the standard deviation, use:

S =
√
S2 (6)

Standard deviation is used indicate the mean variance for a data set is spread out from
the mean. The standard deviation may be used to identify an expected value range.

In any data set, there is a risk of data points that lay outside of accepted boundaries.
In order to state findings accurately, it is important to neglect these outlying data points.
This is done through an outlier analysis. A data point is an outlier when it’s deviation lies
outside of a certain threshold defined by the following equation.

δmax > τS (7)

The value δmax is the maximum deviation. This must be larger than product of the standard
deviation found in equation (6) and τ value. The value τ or Thompson’s value is obtained
using a table found in the appendix [9].

The outlier analysis only ever identifies one value. This value is then neglected. After
each iteration a new max deviation and τ must be identified with the revised data set.
Subsequently, the mean and standard deviation must also be recalculated for the revised set.

The results from lab 1 were used to find the spring stiffness coefficient, k. The obser-
vation was made that the experimental results were similar to the stiffness provided by the
manufacturer. When a manufacturer makes a claim, it says that every time our device is
used, it performs a certain way. Unfortunately, this is only a hypothesis. Often, there is a
risk of variance. If the claim were true, all experimental trials would be identical. In order
to make a claim which includes this risk factor, the statement must include a confidence
interval. A confidence interval allows the hypothesis to include deviation from the mean
value (in this case expected value) with a designated % level of confidence represented by a
range. The % amount of confidence level is represented by α. A range including an above
or below value is known as a 2-Sided. This hypothesis follows the equation below:

µ = x± tα/2
S√
n

(8)

The value µ gives the maximum and minimum values for your confidence range. The mean,
x is accompanied by the value of accepted deviation. The deviation is the product of tα/2,
found on the t-distribution table, and the quotient of the standard deviation and the root
of the data points. The t-distribution is used due to small sample size. A graph of the
t-distribution values about the mean gives a bell curve. A Gaussian or normal distribution
my be used to project results for larger sample size. The maximum of this curve is at the
mean value. Area under the curve represents the sum confidence. The value α represents
the sum area under that curve between the standard deviation and the respective µ value.
The value tα/2 is found by relating α/2 and your degrees of freedom on a t-distribution table.

Given a good understanding of a set or sets of data, it may be appropriate to compare a
data set with a second set of data. This may provide a variety of information and/or answer
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specific questions. For instance; if experimental method varied, which method was more
accurate; whether or not if two different formulations of the same product give equivalent
results in order to test repeatability; and/or to observe a trend or identify claims relating
to the sample error. This information may be gained through a statistical branch called
comparative analysis. In this lab, a statistical technique referred to as hypothesis testing is
employed. The values obtained above represent a single set of data. A comparative analysis
compares many of the values obtained above in order to better understand and identify any
relationships or lack there of.

To begin hypothesis testing, two mutually exclusive hypotheses need to be made based on
the purpose of the comparative analysis. The null hypothesis, H0, states that your hypothesis
is true. The alternative hypothesis, H1, states that your hypothesis is false thereby rejecting
the null hypothesis. In this experiment the hope is to understand whether there is deviation
between the experimental data and the data collected by a different group. This is evaluated
by comparing the t value obtained using the t-distribution tables to a t0 value obtained using
the following equations. Note: the following equations two are for 2 sets of data.

t0 = x1 − x2

Sp
√

1
n1

+ 1
n2

(9)

Where Sp can be found using the equation:

Sp =
√

(n1 − 1)S2
1 + (n2 − 1)S2

2
n1 + n2 − 2 (10)

If the two t values, t and t0, are found to be equal this indicates that the null hypothesis
is supported. If the two t values are not equal this indicates that variance between the two
data sets is present. This can be understood as the mean value for each set exists outside of
the confidence interval of the other. This may suggest that a larger interval is required.
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3 Experimental Apparatus and Procedures

Figure 1: Instron model 5582
equipped with a 100kN load cell

An Instron tester is used as our primary apparatus for
testing. The Instron model 5582 (fig.1) tester, used during
this experiment, is a screw driven testing device used for
both compression and tension [3]. In this experiment the
Instron was used to compress isolators or springs (fig.2) [1].
Compression of the isolator is done using a load cell or
force measurement transducer. The load cell is attached
to the cross head. Factors that affect the accuracy of the
load cell are: change in temperature and change in balance
as related to the applied load. In this case a load cell of
100kN was used [1] [3].

The first step is to turn on the Instron, seen in Figure
1, and wait for the electronic display on the base of the
machine to finish the start up sequence. Then activate the
control software, Merlin, on the computer. Ensure that
the proper load cell is loaded and that Merlin is reading,
from left to right, "Load" measured in pounds forcelbf and "Extension" measured in inches
(in). Place the first isolator on the center of the load bearing plate so that the isolator is as
centered as possible. Lower the load cell using the jog button. Release jog shortly before the
load cell touches the isolator. Next, place a piece of paper on top of the isolator. Complete
a paper test by wiggling the paper lowering the load cell using the wheel control until the
paper is just barely able to slide out. This ensures that the gap between the isolator and
cross head is minimal. Be sure to zero both the load and deflection values in Merlin before
continuing. The experiment is now set up [1] [3].

(a) (b)

Figure 2: a) Coiled Spring (isolator 1) b)
Linear Arch Spring (isolator 2)

For this experiment load will be applied to
the isolator by lowering the cross head, there by
increasing the deflection, in 0.05 inch increments.
The head will read its final position after 0.60
inches of deflection. A table is used to collect
load at each increment. In order to run the ex-
periment begin to apply the load to the isolator
using the scroll wheel. Slowly move the cross
head down until deflection reaches 0.05 inches
and record the load and deflection values. Con-
tinue lowering the cross head until the deflection
reaches 0.60 inches, recording values every 0.05
inches. Once completed, press the jog up button
to remove the load. Repeat this test from pro-
cedure five times per isolator in order to verify
results and ensure repeatability [1] [3].
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4 Presentation of Results

Table 1 is a collection of the values used to perform the statistical analysis of the com-
pression of a coiled spring Isolator using a Instron 5582. There are two sets of numbers for
the given and the experimental data. The original data set is followed by the data set with
the outliers removed. An outlier analysis was performed on the original data sets to extract
values that have a low probability of occurrence.

Table 1: Experimental and Given Spring Constant Values with Outlier Analysis

Given Data Given Data Without
Outliers Experimental Data Experimental Data

Without Outliers
703.4 703.4 704.3 704.3
690.2 690.2 702.19 702.19
680.3 695.5 710.95 710.95
708.8 689.3 702.29 702.29
695.5 694.3 701.51 701.51
689.3 692.7 - -
694.3 696.7 - -
692.7 701.6 - -
696.1 - - -
701.6 - - -

To determine the confidence interval, often the theory of Gaussian normal distribution
is applied. The Gaussian distribution is used to estimate the mean and gives an interval
estimate of where the mean will occur. The distribution is a bell shaped curve with the
y-axis representing how often a measurement is likely to occur, and the x-axis representing
the measurement. In the case of this experiment, the measurement is the spring constant
(lbf/in). A t-distribution was used due to the small sample size. On the curves in the
figures shown below, the peak of the curve represents the mean of the data set. The shaded
area on the tail ends of the curve represents the alpha level. The alpha level represents
the probability of rejecting the null hypothesis. Because both intervals are calculated at
98%, the tail ends on both sides have an area of 0.01. All values necessary to calculate the
confidence interval and the final interval are presented in Table 2.
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Table 2: 98% Confidence Interval Values
Given Data Experimental Data

Mean 695.3875 704.248
STD 5.0098 3.8886

alpha level 0.01 0.01
Degrees of Freedom 7 4

t value 2.998 3.747
Standard of error 1.77123 1.73787

SE*t value 5.3101 6.5118
Lower end of range 690.0774 697.7362
Upper end of range 700.6976 710.7598

Figure 3 represents the 98% confidence interval for the experimental data after outlier
analysis. The significance of this graph is: one is 98% confident that an experimental value
of the spring constant will fall within the range 697.7362 lbf/in and 710.7598 lbf/in.

Figure 3: Distribution Table of Lab 1 Results with 98% Confidence Intervals

7



Figure 4 represents the 98% confidence interval for the given data after outlier analysis.
The significance of this graph is: one in 98% confident that a given spring constant value
will fall within the range 690.0774 lbf/in to 700.6976 lbf/in.

Figure 4: Distribution Table of the Given Results with 98% Confidence Intervals

Table 3 contains the variables necessary to perform a comparative analysis of the experi-
mental and given data sets. The ultimate value that is being calculated is t0. The calculated
t value compared to a value in the t-distribution table. The value from the t-distribution
table is 2.718. The result of comparing these two values, dictates whether or not there is
variance between the two data sets. Since the value from the table is not equal to the calcu-
lated value of 3.354, the conclusion is that the data sets have variance between each other
at a 98% confidence interval.

Table 3: Comparative Analysis Calculated Values
Experimental Data Given Data

x1 704.248 x2 695.3875
S1 3.8886 S2 5.0098
S2

1 15.1212 S2
2 25.09809

n1 5 n2 8
v 11 v 11

Comparative Analysis Results
Sp 4.633587 t 2.718
t0 3.354 (using table)
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5 Uncertainty Analysis

Outlier analysis is a method used to eliminate values that have a low probability of
occurring when they deviate. The first step in the outlier analysis is to take the mean and
standard deviation of the original data sets. Performing outlier analysis is also known as the
Thompson’s τ Test. A Thompson’s τ table provides a value, that when multiplied by the
standard deviation, equation (7), creates a threshold for how much a value can deviate.

Table 4: Outlier Analysis of Given and Experimental Data
Given Data Experimental Data

Original Mean 695.22 τ 1.789 -No Outliers
Original STD 8.048 τS 14.47 -No Outliers

1st corrected Mean 696.8778 τ 1.777
1st corrected mean STD 6.4768 τS 11.51

Final Mean 695.3875 τ 1.749 Final Mean 704.248 τ 1.572
Final STD 5.0098 τS 8.762 Final STD 3.8886 τS 6.1128

As seen in table 4 the Thompson’s τ Test must be performed several times until there are
no more outliers in the data set. Data values are not considered outliers when the deviation
of a data value is lower than the τS value, the maximum deviation a point can have to not be
considered an outlier. For the given data set, the Thompson’s τ Test had to iterated three
times in order to remove all outliers. The final mean is 695.3875 lbf/in and the final standard
deviation is 5.0098 lbf/in. For the experimental data, after performing the Thompson’s τ
Test one time, there were no outliers found in the data set. So the original data set is also
the final data set, with a mean of 704.248 lbf/in and a standard deviation 3.8886 lbf/in.

Table 5: Outlier Analysis: Given Data Values
Original Values Deviation New Values Deviation Final Values Deviation

703.4 8.18 703.4 6.5222 703.4 8.0125
690.2 5.02 690.2 6.6778 690.2 5.1875
680.3 14.92 708.8 11.9222 695.5 0.1125
708.8 13.58 695.5 1.3778 689.3 6.0875
695.5 0.28 689.3 7.5778 694.3 1.0875
689.3 5.92 694.3 2.5778 692.7 2.6875
694.3 0.92 692.7 4.1778 696.1 0.7125
692.7 2.52 696.1 0.7778 701.6 6.2125
696.1 0.88 701.6 4.7222
701.6 6.38

Table 5 shows the iteration of the Thompson’s τ Test in terms of the data values. The
first column represents the data values and the column that follows is the deviation of the
data value, which is determined by equation 4. A value that is colored red means that it was
determined an outlier based on the τS value. For example, looking at the original data set
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of the given data, a τS value of 14.47 was determined. The spring constant value of 680.3
lbf/in had a deviation of 14.92. Because this value is higher than the TauS value, 680.3
lbf/in is deemed an outlier.

Table 6: Outlier Analysis: Experimental Values
Final Value Deviation

704.3 0.052
702.19 2.058
710.95 6.702
702.29 1.958
701.51 2.738

Table 6 shows the outlier analysis for the experimental data values. No iterations of the
Thompson’s τ Test needed to be performed because all values in the original data set had
deviations lower than the τS value. The τS value for the experimental data was 6.1128 and
all deviations calculated using equation (4), were lower than this number.

For uncertainty in terms of the experimental process, the frame of the Instron 5582 is
subject to compliance; a deflection under a load. Therefore, using the extension readout
of the Instron 5582 to measure deflection introduces error. Specifications for the Instron
5582 found in the reference manual for users indicate that the mean stiffness of the frame
kF = (1.46 ∗ 106)lb/in [3, 7]. Assuming that the Instron 5582 frame deflects linearly with
respect to load, a formula may be derived to determine the deflection of the frame under
certain loads:

Pi = kFyF , (11)

where Pi is a particular load and yF is the frame defection at that load. The maximum
frame deflection from recorded loads for each isolator are negligible is as shown in table 7:

Table 7: Maximum Frame Deflection Due to Compliance

Spring Coil Isolator Linear Arch Isolator
0.00022767 in 0.0002906 in
0.0455% error 0.0581% error

A second major contributor to the uncertainty in this lab is our procedure dictating a
static starting point [1]. Using a constant dynamic load would require equation (2) where dx
is a function of time(t). An experiment conducted using a steady slow load rate would allow
for more accurate readings. Equation (1) is used when preforming static loading however
start position and moment of engagement are impossible to test for. Due to this a curve
fitting process was carried out.
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6 Discussion of Results

To begin the statistical analysis, an outlier analysis using Thompson’s τ Test was per-
formed on both the given and experimental data. The purpose of this test is to remove
values from the data set with a low probability of occurring, specifically by observing the
variance of each data value. For the given values of the spring constant, two iterations of the
Thompson’s τ Test had to be performed in order to eliminate all outliers. The final values
of the given data used to perform the rest of the statistical analysis can be seen in Table 5.
All acceptable values had a deviation smaller than the τS value calculated in table 4. For
the experimental data, after one Thompson’s τ Test, none of the data values had deviations
larger than the τS value. Thus the original data is the final data used to perform further
statistical analyses.

After performing the outlier analysis for both the given and experimental data set, the
mean and standard deviation were calculated separately for both sets. For the given data
set, the mean is 695.3875 lbf/in with a standard deviation of ±5.0098 lbf/in. For the
experimental data set, the mean is 704.248 lbf/in with a standard deviation of ±3.8886
lbf/in. Using the mean and standard deviation for both data sets, along with the sample
size, a 98% confidence interval was formulated. This interval is representative of the normal
distribution of the data sets. This curve represents the measurement, which is the spring
constant in lbf/in, versus how often the value is likely to occur. The peak of the normal
curve is representative of the true mean. For the given data the peak is at 695.3875 lbf/in
and for the experimental data the peak of the curve is at 704.248 lbf/in.

The peak of the normal curve, or the mean of the data set is important in evaluating
the confidence interval, as it is the reference point. The purpose of a confidence interval
is to calculate a range of data that the mean is likely to fall within. In order to do that,
one must begin by calculating the alpha level. The alpha level represents the shaped area
underneath the curve. For a 98% confidence interval, the alpha level is 0.01. the alpha level
is the probability of rejecting the null hypothesis. This value is pertinent in determining the
t value. The t distribution table is used because the sample size is less than 30. The t value
is determined by looking at the table with knowledge of the sample size and the alpha level.

By multiplying the standard error by the t distribution value, the range for the confidence
interval is created. This value is added and subtracted from the mean of the data set, creating
a 98% confidence interval. For the given data the range is 690.0774 lbf/in to 700.6976 lbf/in.
One is 98% confident that the mean value of the spring constant falls within that data range.
For the experimental data set: one is 98% confident that the mean spring constant value
falls between 697.7362 lbf/in to 710.7598 lbf/in. Due to the interval being calculated at
98% confidence, the probability that the mean will not fall within that data range is 0.01 in
either side of the confidence interval.

The comparative analysis compares both the experimental and given data set. The
result of the comparative analysis determines whether or not there is variance between the
two data sets. The null hypothesis for the comparative test states that there is no variance
between the two data sets. The comparison is between a calculated t value of 3.354. The
calculated t0 value was compared to a table value found by using the parameters of a 98%
confidence interval. The t value is; 2.718. Since these values are not equal, the null hypothesis
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is rejected. There is variance between the two data sets. A suggestion for repeating this
analysis would be to increase the confidence interval. With a higher confidence interval, the
area under the curve corresponding to the null hypothesis would not invade the shaded area
under the curve corresponding to the α level.

7 Conclusions and Recommendations

Statistical analyses are used in research to interpret and communicate research findings.
These finding may or may not support the hypotheses assumed prior to conducting exper-
iments. By performing statistical analysis, results can also support the methodology and
conclusions. All statistical analyses are performed at 98% confidence. The experimental and
given data sets underwent comparative analysis. Comparative analysis dictates the variance
between the two data sets. The initial null hypothesis assumed true is that there is no
variance between the data sets. Specifically, this refers to the spring constant value and its
deviation which can be represented by the t values. The t0 value is calculated using statistical
observations from the data sets and the other recorded from the t distribution table based
on the sample size and α level. The calculated value of t0 is 3.354, and the t value from the
table is 2.718. Because the values are not equal, the null hypothesis is rejected. This means
that there is variance between the two data sets. As a result, if a comparative analysis were
to be repeated of these two data sets, a larger confidence interval would be suggested.

Confidence intervals at 98% of both the given and experimental data sets were calculated
and plotted, which can be seen in figures 3 and 4. This confidence interval is associated with
an alpha level of 0.01. The α level signifies the probability of rejecting the null hypothesis.
The null hypothesis in this case is that the mean of the data set will fall within the data
range specified by the confidence interval. For the given data, the 98% confident states that
the mean of the give spring constants will fall within 690.0774 lbf/in and 700.6976 lbf/in.
For the experimental data, the 98% confident states that the mean of the experimental
spring constants will fall within 697.7362 lbf/in and 710.7598 lbf/in.The null hypothesis is
accepted for both data sets.

An outlier analysis was performed on the data sets using Thompson’s τ Test. This test
creates a threshold value on the amount of deviation a data value can have from the mean,
using equation (7). The τ value is determined by the sample size. The deviation of a data
point from the mean is determined using equation (4). If the deviation of a data point
from the mean is larger than the threshold value deviation, then that value is considered an
outlier and is rejected. The Thompson’s τ Test was repeated until the data set no longer
contained outliers. For the given data, the test had to be iterated three times until the data
set was finalized. For the given data the mean used for all analyses is 695.3875 lbf/in and the
standard deviation is 5.0098 lbf/in. For the experimental data, the Thompson’s τ Test only
had to be performed once, as there were no outliers in the set. The mean spring constant
for the experimental data is 704.248 lbf/in with a standard deviation of ±3.8886 lbf/in.

If this statistical analysis were to be repeated, some changes would be made. The
comparative analysis results reject the null hypothesis which means that there is variance
between the two data sets. Due to this result, it may be a beneficial to increase the confidence
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interval. The result of this comparative analysis test implies that the area under the curve
that correspond to the null hypothesis lies well within the shaded area under the curve,
corresponding to the α value. This indicates that a smaller α value can be used in the
analysis of this data. To improve result and accuracy more trials should be run.
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9 Appendices

Table 8: Experimental Coiled Spring Data
Coiled Spring Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

Target Depth (in) Actual Depth (in) Load (lbf) Actual Depth (in) Load (lbf) Actual Depth (in) Load (lbf) Actual Depth (in) Load (lbf) Actual Depth (in) Load (lbf)
0.05 0.0502 19.2900 0.0500 22.0500 0.0502 15.9900 0.0500 22.0500 0.0502 22.1300
0.10 0.1000 48.1100 0.1000 50.5500 0.1000 42.3300 0.1000 50.5500 0.1002 50.9700
0.15 0.1502 80.6500 0.1500 82.5500 0.1502 73.6800 0.1500 82.5500 0.1498 82.9600
0.20 0.2001 113.8000 0.2005 115.9000 0.2003 106.7000 0.2005 115.9000 0.1999 116.0000
0.25 0.2503 147.7000 0.2505 149.6000 0.2501 140.1000 0.2505 149.6000 0.2507 150.4000
0.30 0.2999 182.3000 0.3001 184.5000 0.3003 174.6000 0.3001 184.5000 0.3008 185.6000
0.35 0.3500 219.6600 0.3503 222.0000 0.3500 211.6000 0.3502 222.2000 0.3506 223.0000
0.40 0.4006 257.8000 0.4002 260.3000 0.4000 249.7000 0.4001 260.3000 0.4001 260.6000
0.45 0.4501 295.6000 0.4500 298.6000 0.4501 288.1000 0.4500 298.6000 0.4503 299.1000
0.50 0.5000 332.4000 0.5003 336.7000 0.5003 326.9000 0.5001 336.7000 0.5000 336.2000

Correct Depth (in) Correct Load (lbf) Correct Depth (in) Correct Load (lbf) Correct Depth (in) Correct Load (lbf) Correct Depth (in) Correct Load (lbf) Correct Depth (in)
0.0000 0 0.0000 0 0 0 0 0 0 0 0
0.0502 0.0163 19.2900 0.0200 22.0500 0.0056 15.9900 0.0200 22.0500 0.0209 22.1300
0.1000 0.0661 48.1100 0.0700 50.5500 0.0554 42.3300 0.0700 50.5500 0.0709 50.9700
0.1502 0.1163 80.6500 0.1200 82.5500 0.1056 73.6800 0.1200 82.5500 0.1205 82.9600
0.2001 0.1662 113.8000 0.1705 115.9000 0.1557 106.7000 0.1705 115.9000 0.1706 116.0000
0.2503 0.2164 147.7000 0.2205 149.6000 0.2055 140.1000 0.2205 149.6000 0.2214 150.4000
0.2999 0.2660 182.3000 0.2701 184.5000 0.2557 174.6000 0.2701 184.5000 0.2715 185.6000
0.3500 0.3161 219.6600 0.3203 222.0000 0.3054 211.6000 0.3202 222.2000 0.3213 223.0000
0.4006 0.3667 257.8000 0.3702 260.3000 0.3554 249.7000 0.3701 260.3000 0.3708 260.6000
0.4501 0.4162 295.6000 0.4200 298.6000 0.4055 288.1000 0.4200 298.6000 0.4210 299.1000
0.5000 0.4661 332.4000 0.4703 336.7000 0.4557 326.9000 0.4701 336.7000 0.4707 336.2000
0.5500 0.5161 364 0.5199 364 0.5054 364 0.5199 364 0.5206 364
0.6000 0.5661 400 0.5699 400 0.5554 400 0.5699 400 0.5706 400
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Table 9: Thompson’s Table
n τ n τ n τ

3 1.1511 21 1.8891 40 1.9240
4 1.4250 22 1.8926 42 1.9257
5 1.5712 23 1.8957 44 1.9273
6 1.6563 24 1.8985 46 1.9288
7 1.7110 25 1.9011 48 1.9301
8 1.7491 26 1.9035 50 1.9314
9 1.7770 27 1.9057 55 1.9340
10 1.7984 28 1.9078 60 1.9362
11 1.8153 29 1.9096 65 1.9381
12 1.8290 30 1.9114 70 1.9397
13 1.8403 31 1.9130 80 1.9423
14 1.8498 32 1.9146 90 1.9443
15 1.8579 33 1.9160 100 1.9459
16 1.8649 34 1.9174 200 1.9530
17 1.8710 35 1.9186 500 1.9572
18 1.8764 36 1.9198 1000 1.9586
19 1.8811 37 1.9209 5000 1.9597
20 1.8853 38 1.9220 to->∞ 1.9600
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Table 10: t-distribution table
α/2

DOF 0.1 0.05 0.025 0.01 0.005 0.001 0.0005
∞ 1.282 1.645 1.960 2.326 2.576 3.091 3.291
1 3.078 6.314 12.706 31.821 63.656 318.289 636.578
2 1.886 2.920 4.303 6.965 9.925 22.328 31.600
3 1.638 2.353 3.182 4.541 5.841 10.214 12.924
4 1.533 2.132 2.776 3.747 4.604 7.173 8.610
5 1.476 2.015 2.571 3.365 4.032 5.894 6.869
6 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7 1.415 1.895 2.365 2.998 3.499 4.785 5.408
8 1.397 1.860 2.306 2.896 3.355 4.501 5.041
9 1.383 1.833 2.262 2.821 3.250 4.297 4.781
10 1.372 1.812 2.228 2.764 3.169 4.144 4.587
11 1.363 1.796 2.201 2.718 3.106 4.025 4.437
12 1.356 1.782 2.179 2.681 3.055 3.930 4.318
13 1.350 1.771 2.160 2.650 3.012 3.852 4.221
14 1.345 1.761 2.145 2.624 2.977 3.787 4.140
15 1.341 1.753 2.131 2.602 2.947 3.733 4.073
16 1.337 1.746 2.120 2.583 2.921 3.686 4.015
17 1.333 1.740 2.110 2.567 2.898 3.646 3.965
18 1.330 1.734 2.101 2.552 2.878 3.610 3.922
19 1.328 1.729 2.093 2.539 2.861 3.579 3.883
20 1.325 1.725 2.086 2.528 2.845 3.552 3.850
21 1.323 1.721 2.080 2.518 2.831 3.527 3.819
22 1.321 1.717 2.074 2.508 2.819 3.505 3.792
23 1.319 1.714 2.069 2.500 2.807 3.485 3.768
24 1.318 1.711 2.064 2.492 2.797 3.467 3.745
25 1.316 1.708 2.060 2.485 2.787 3.450 3.725
26 1.315 1.706 2.056 2.479 2.779 3.435 3.707
27 1.314 1.703 2.052 2.473 2.771 3.421 3.689
28 1.313 1.701 2.048 2.467 2.763 3.408 3.674
29 1.311 1.699 2.045 2.462 2.756 3.396 3.660
30 1.310 1.697 2.042 2.457 2.750 3.385 3.646
60 1.296 1.671 2.000 2.390 2.660 3.232 3.460
120 1.289 1.658 1.980 2.358 2.617 3.160 3.373
1000 1.282 1.646 1.962 2.330 2.581 3.098 3.300
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