Digital Control of a Maneuvering Submarine

ELE/MCE 503 Final Project
Fall 2019
Due Thursday, December 19

1 Imtroduction

The motion of a submarine is influenced by the angles of several control surfaces (inputs) and the
goal is to achieve desired motion along several degrees of freedom (outputs). Thus, submarine
control requires a multiple-input multiple-output (MIMO or multivariable) control system. The
mathematical description of a submarine is a set of nonlinear differential equations, or equivalently,
a nonlinear state-space model. It is customary to linearize the model output about an operating
point such as a constant-velocity trajectory, and to control deviations from this operating point.
It may be necessary to design several linear control systems, each for a different velocity, and put
them together with a gain-scheduling algorithm as is done in [3]. In this project, we consider only
the design of a single linear multivariable digital tracking system.

2 Description of the Plant

The material from this section is taken from [1,2]. The linearized state-space model for the
submarine is

x=Ax+ Bu

y=0Cx

where the state variables are:

z1 = forward velocity, u, ft/sec
zo = lateral velocity, v, ft/sec
z3 = vertical velocity, w, ft/sec
z4 = roll rate, p, deg/sec

x5 = pitch rate, g, deg/sec

Zze = yaw rate, r, rad/sec

z7 == roll angle, degrees

zg = pitch angle, degrees.

The inputs are:
u1 = bow/fairwater planes, degrees
us = rudder deflection, degrees
ug = port stern plane deflection, degrees
ug = starboard stern plane deflection, degrees

The outputs are:
y1 = roll angle, degrees
yo = pitch angle, degrees
y3 = yaw rate, deg/sec
ys = depth rate, ft/sec.



The numerical values for the matrices A, B, C are given in the Matlab function plant param.m,
which is available on the course website. The modeled submarine is about 400 ft long. The system
variables are indicated in the following figure:

by
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Figure 1: Sketch showing positive directions of axes, angles, velocities, forces, and moments. From

2].

3 Tracking System Design

We begin with the design and analysis of a full-state feedback tracking system and then consider
using an observer to estimate the plant state vector from the input and output signals of the
plant. The sampling interval for this project is T=0.1.

3.1 Full-State Feedback

A tracking system is to be designed to follow step commands for each of the four plant outputs.
Thus, the discrete-time additional dynamics must have an eigenvalue equal to 1 on each of the
four tracking errors. This results in the additional dynamics block consisting of four parallel
digital integrators, phia=eye(4), gammaa=eye(4).

It is not uncommon for high-order control systems to exhibit more than one settling time.
That is, different signals settle in different amounts of time. The control systems encountered in
class this semester were all designed using a single settling time, Ts, which governed all of the
state variables. In this project, most of the closed-loop poles may be chosen to have a setting
time Ts1. However, to avoid actuator saturation, at least one of the closed-loop poles must be
chosen with a longer settling time, Ts2. For the particular submarine considered in this project,
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realistic values for the two settling times are:
Ts, =25 sec and Tg, = 85 sec. (1)
Consider the following choice of closed-loop poles:

cp=—0.1969+j%0.3130
spoles=[-0.5049 -0.4511 cp conj(cp) s7/Tsl s1/Ts2].

1. Explain how the choice of sampling interval given at the beginning of this section
agrees with the rule-of-thumb given in class for choosing the sampling interval
of a digital tracking system.

2. Explain how the choice of spoles given above agrees with the information in the
Rules for Selecting Pole Locations handout. For each entry in the spoles vector
, explain which rule is being used.

3. Call tsd two times, once with place and a second time with rifbg. Examine
the stability robustness of each system and explain which of these systems has
adequate robustness to be useful as a real-world submarine control system.
Provide a printout of your Matlab code.

3.2 Observer-Based

[Unless otherwise specified, use the feedback gain matrix calculated using rfbg for the observer-
based tracking systems in this section.] The pole-placement approach to the calculation of observer
gains amounts to choosing the observer pole locations. However, when the observer uses more
than one measured plant output, there are an infinite number of observer gain matrices that result
in the specified observer pole locations. A given pole-placement program selects a particular gain
matrix from this infinite set and that selection has an influence on the stability margins of the
resulting observer-based tracking system. For this project, the following choice of observer pole
locations has been found to work well:

opoles = [-.0384 —0.251 s6/(Ts1/5)].

4. Explain how this choice of observer pole locations agrees with the information
in the Rules for Selecting Pole Locations handout. For each entry in the opoles
vector explain which rule is being used.

5. Using the given opoles vector, calculate observer gain matrices using place and

the stability robustness bounds for the resulting observer-based tracking sys-
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tems. Compare these with each other and with the robustness bounds for the
. state-feedback tracking system from Part 2. Note that the function rb_tsob cal-
5% culates the stability robustness bounds for any observer-based tracking system.
Provide a printout of your Matlab code.

6. Draw a block diagram of the complete observer-based tracking control system
used for this project. Show all equations used to implement the digital tracking
system, A/D and D/A converters, and a block containing the hardware plant.



4 Simulations

The performance of the observer-based tracking system is demonstrated by simulating a combined
maneuver in which step commands for each plant output are applied simultaneously at £ = 5 sec.
The commands are as follows: roll angle (1) is to be maintained at 0 deg, pitch (y2) is commanded
to 1 deg, yaw rate (y3) is commanded to 1 deg/sec, and depth rate (y4) is commanded to -0.5 ft/sec.

The simulations for this section may be obtained using the Simulink model project_sim. slx,
which is available on the course web site. Note that the plots may be obtained with the plotting
script ts_dobp.m. The simulations are to be performed for 200 sec. Put two separate graphs on
each Matlab plot.

’7 Consider the observer-based tracking system designed using rfbg and obg_ts
with spoles and opoles given above. Compare the plant outputs and inputs
with those shown in Figs. 2 and 3, which were obtained using an LQG/LTR
control system in [1,2].

Suppose you were to do this project only with the standard pole-placement tool available in
Matlab, which is the place function:

8. Calculate the feedback and observer gains using the place function with the
given vectors for spoles and opoles. Compare robustness bounds of this sys-
tem with those of the observer-based tracking system designed using the new
functions rfbg and obg_ts. Provide a printout of your Matlab code.

9. Simulate the tracking system obtained using only place. Compare the output
and input plots with those of the observer-based tracking system designed using
rfbg and obg ts. Do the simulation results for the place tracking system give
any cause for concern? Is this tracking system suitable for hardware testing?
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% Corey Murphy % 1

% MCE 503 %

% Digital Control of a Maneuvering Submarine %

load sroots

A=[-3.826%e-02 -2.1964e-02 -2.7533e-03 -3.3173e-04 2.0734e-03 5.53%4e-02 0 5.1285e-06
1.1417e-03 -1.5939e-01 -3.3788e-05 -2.3578e-02 2.8353e-03 -2.6860e-01 2.2745e-03 -2.5914e-05
—-4.7476e-04 1.3510e-03 -9.6526e-02 -2.7945%e-02 2.1163e-01 7.6140e-04 0 1.3221e-04

1.3945e-02 -6.6430e-01 -8.0%31e-02 -4.3452e-01 -2.5262e-01 -2.1520e-02 -1.6030e-01 1.8264e-03
7.1418e-05 -2.592%-04 7.8117e-02 -1.1406e-02 -4.0815e-01 -7.7327e-04 0 -2.4985e-03
-1.5782e-03 -1.1622e-01 3.4035e-04 -8.0011e-03 2.280%e-03 -3.8201e-01 2.5883e-04 -2.5501e-06
0001 1.1328e-02 -1.0538e-01 -4.9352e-10 -1.2635e-02

0000 9.9427e-01 1.0689%-01 1.249%4e-02 01;

B=[-1.2666e-03 -1.527%e-03 9.8625e-05 5.8625e-05

0 6.0491e-02 -3.6976e-03 3.6976e-03

-2.5204e-02 -3.8763e-086 -2.14683e-02 -2.1483e-02
0 6.3847e-02 2.6060e-01 -2.6060e-01

1.3873e-02 7.3256e-07 -2.9781e-02 -2.9781e-02

0 -8.7846e-02 -4.208%4e-04 4.20%4e-04

0oo0oo0ao

00001

c=s(0o0o0co00Q0 .10

pooo0oo0o0o0.1
0000 -1.0745%e-01 9.9954e-01 4.6827e-09 1.3316e-03
1.053%9e-01 -1.062%e-01 9.8873e-01 0 0 0 2.7118e-02 -5.4843e-01];

Tsl=25;
Ts2=85;
T=0.1:

% Full-State Feedback (Problem #3) %

cp=-0.1969%+1%*0.3130;

spoles=[-0.504% -0.4511 cp conj(cp) s7/Tsl s1/Ts2];
zpoles=exp (T*spoles);

[phi,gammal=c2d (&,B,T);

phia=eye (4);

gammaa=eye (4) ;

[K1,K2,deltal,delta2]=tsd(phi,gamma,C,phia, gammaa, zpoles, T, 'rfbg')

o

% Observer-Based (Problem #5)%

opoles=[-0.0384 -0.251 s6/(Ts1/5)1;
zopoles=exp (T*opoles);

L=place(phi',C', zopoles)'
[L,deltal,delta2]=obg ts(phi,gamma,C,phia,gammaa,Kl,K2, zopoles,T)
[deltal,delta2]=rb tsob(phi,gamma,C,phia, gammaa,Kl, K2, L, T)

Fproject sim
ts dobp
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The sampling interval of T = 0.1 agrees with the rule-of-thumb given in
class. In order to choose a sampling interval for a digital tracking system, the
formula T = min(Ts1/[20(n+q), 1/5Bmax] Must be considered. Plugging in
0.313 for Bmax yields a sampling time of T = 2.007. Plugging in 25 for Ts1, 8
for n and 4 for q yields a sampling time of T = 0.104, the smaller value of the
two formulas. This value matches the original given sampling time of T =
0.1, confirming that it does in fact agree with the rule-of-thumb.




Problem #2
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The first step when determining the spoles for this problem would be to determine the
eigenvalues of the A matrix. There are eight eigenvalues for this matrix, six with
negative real parts and two containing negative real parts and imaginary parts. The
eigenvalues of -0.5049 and -0.4511 are chosen as spoles as they are negative real parts
to the left of s1/Tsl (s1/Tsl = -0.1848). These poles are also considered sufficiently
damped plant poles. This is rule #2 from regulator poles. The eigenvalues -
0.1969+0.313i and -0.1969-0.313i are also chosen as spoles. These poles are also
considered sufficiently damped plant poles. Despite being complex, no added
damping is required because they are to the left of s1/Ts1 (regulator rule #2). The four
remaining eigenvalues are all negative real parts but remain to the right of s1/Ts1,
meaning these will instead be accounted for by adding them to the Bessel cluster.
Because this is an observer-based tracking system, n+q = 8+4 = 12 spoles will be
required. One closed-loop poles must be chosen with a longer settling time of Ts2 to
avoid actuator saturation. This pole is accounted for by scaling s1/Ts2. The
remaining poles are accounted for by using scaled Bessel, s7/Ts1 (regulator rule #1).
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Problem #3

place rfbg

delta values:
0.41865 0.5386

5174 -2.2193  27.6763 (6926 -1.0742  16.2011 0.4180 0.5483
9930 0.0301 0.0297 -2.6667 —0.1934 0.3971 0.4774  0.6248
5341 1.5119 -2.5616 L6097 0.5455 2.9357 0.5177  0.6548
3536 0.0008 -1.8826 2.6120  -0.0882 2.7949
Kl =
47.4060 -1.7602 -21.8209  0.0274  27.1351
27.1003 -1.2350 -2.6111 0.1767 2.4614
-69.9461 3.9405  -4.4437 0.5373 -5.7534

—44.4292 5.2394 -0.3599 -0.3151 -3.3479

K2 =
-0.1115 0.3913 -0.6218 -0.5300
-0.0045 0.0997 -0.5200 -0.0223
0.0488 -0.6609 0.7424 -0.1792
-0.0834 -0.3300 0.4780 0.0837
deltal =
0.5177
delta2 =
0.6548

The stability robustness bounds that were determined using the place
command would not be considered acceptable for hardware testing. With
deltal = 0.2324 and delta2 = 0.2489, these bounds fall well below the
acceptable hardware testing target of 0.5. The stability robustness bounds
that were determined using rfbg were much better than the previous bounds.
With deltal = 0.5177 and delta2 = 0.6548, both bounds are greater than 0.5
and would be considered adequate to be used in a real-world submarine
control system.

.8188
.9844
.6405
.5440

L6127
L1973
.2283
.1885

25.2090
2.1608
0.2971

-2.30%96



Problem #4

-0.0384 and -0.251 were both determined to be zeros and resided in the left half plane,
making them a good choice for opoles (observer poles rule #2). The remaining 6 poles
would be determined using normalized Bessel poles scaled by the desired observer
settling time (observer poles rule #1). In this case, the observer settling time is targeted
to be five times faster than the original settling time of Ts1 = 25. This makes Tsol = 5.
These normalized Bessel poles are represented by s6/(Ts1/5) or s6/Tsol.




Problem #5

rfbg and place with rb_tsob

rfbg and obg_ts

L = delta wvalues:
0.4631  0.5440
0.0772 0.1875  0.0126  0.0112 o.85TT 9.5832
e e ' ' 0.4404  0.5627
—-0.3441 0.127% —0.02495 —-0.002& 0.4863  0.5552
-0.2318 1.3222 —-0.01%91 0.1248
]'_ =
1.6882¢€ —-0.8642 0.0110 0.0214
0.2798 1.4022 0.0235 0.0132 —0.0994  -1.6430 0.0323
—-0.043%5 0.2132 0.094%5 0.0308 —-0.1000 0.0171 -0.0941
e P e _ 0.1550 2.805%  -0.0282
1.7118 0.2893 o.00z2% 0.0211 C0.0454 10,6364 -
0.6541 1.8057 0.0344 0.0001 0.1717 3.3283 0.00132
-0.0676  -0.7830 0.1030
0.5606 -13.3501 0.3598
0.0860 2.8054  -0.0539
deltal =
0.4373 deltal =
0.4863
delta2 =
deltaz =
0.4320 0.5352

The stability robustness bounds that were determined using the place

command were deltal = 0.4373 and delta2 = 4320. These bounds were not
ideal when compared with the bounds determined using the obg_ts function
but weren’t terrible. They were very close to the acceptable delta value of
0.5. The bounds determined using the obg_ts function were deltal = 0.4863
and delta2 = 0.5952. Deltal is nearly at an acceptable value while delta2 is
well above 0.5. The robustness bounds determined for the state-feedback
tracking systems in part two were superior for the rfbg function but not
nearly as good for the place function.
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Problem #7

Plant Input #1
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The graph of input #1 from the above results has an initial
negative overshoot unlike the input #1 graph from figure 3
where an initial positive overshoot is displayed. The graph of
input #2 from above looks very similar to the graph of input #2
in figure 3. The graph of input #3 from above also looks similar
to the graph of input #3 from figure 3, but the graph above
appears to have slightly less oscillation. The graph of input #4
has a small initial negative overshoot where the graph of input
#4 from figure 3 has a small positive overshoot.




Plant Output #1
T T T

60 80 100 120 140 160 180 200
Time (seconds)
Plant Output #2
T T T

1.5 b
s
0.5 b
O 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200
Time (seconds)
Plant Output #3
15 T T T T T T
e
0.5 b
0 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

Time (seconds)
Plant Output #4

L 1 1 1 1 1
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The graph of output #1 above only has an initial positive
overshoot while the graph of output #1 from figure 2 has an
initial negative overshoot and positive overshoot. The graph of
output #2 only has an initial positive overshoot before settling.
The graph of output #2 from figure 2 has a small oscillation
after its initial overshoot before settling. The graph of output #3
above looks very similar to the graph of output #3 from figure
2. The graph of output #4 also looks similar to the graph of
output #4 from figure 2 with perhaps slightly less oscillations
after the initial negative overshoot.
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Problem #8

L =
-6.5174 -2.21983 27.€763 1.692¢ -1.0742 16.2011
-0.9930 0.0301 0.0297 -2.6667 -0.1534 0.3971 0.0772 0.1875
-8.5341 1.5119 -2.56l1¢ 1.8097 0.5455 2.9357 ; ;
-8.3536 0.0008 -1.882¢6 2.6120 -0.08862 2.7949 -0.3441 0.1279 -0.

-0.2318 1.3222 -0.
L0110
L0235
.0545
.0025
.0344

1.6826 -0.8642
0.2798 1.4022
0.1197  -0.1350 —-0.043% 0.2132

-0.2527 -0.0312 . .
0.0189 -0.1863 1.7118 -0.2893

0.0080 -0.1750 0.6541 1.8057

deltal =

0.21%96

deltaz =

0.2217

oo O O O

The stability robustness bounds for both observer and feedback using the spoles
and opoles are not ideal. All deltas are relatively close to 0.2 which is well
below the acceptable value of 0.5. Once again, it appears that the place
function is not the best choice for good stability robustness. The observer-
based tracking system that was designed using the rfbg function had the best
stability robustness bounds at deltal = 0.5177 and delta2 = 0.6548. The system
designed with the obg_ts function had the second-best robustness bounds at
deltal = 0.4784 and delta2 = 0.5337. The observer-based tracking system with
by far the worst robustness bounds was the system designed using the place
command. This system had bounds of deltal = 0.2196 and delta2 = 0.2217.
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Problem #9
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Input #1 appears to settle slightly faster in this system using the place
function. The other three inputs for both systems all appear to settle at
around the same time. The main difference between the place input
graphs and the graphs from the rfbg and obg_ts input graphs is the
larger amounts of oscillation that takes place before settling in regards
to the system designed using place. This might be cause for concern,
but it is difficult to say solely based off of the input graphs.
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Many of the place system plant output graphs appear very similar to the
output graphs from the rfbg and obg_ts system. The graph of output #1
does appear to have more oscillation than the previous system, but the other
three looks just as good if not better. Once again, it is difficult to tell
whether or not there should be concern with this system solely based off of
its output graphs. However, it is clear from previous problems that the
stability robustness of the system using place was not very good when
compared with the bounds from the rfbg and obg_ts system. Based on the
robustness bounds being less than the recommended 0.5, this control
system designed using the place function would not be suitable for
hardware testing.




